Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Modeling and Decoupling Systemic Risk (2107.10148v2)

Published 21 Jul 2021 in stat.AP, math.ST, stat.ME, and stat.TH

Abstract: Identifying systemic risk patterns in geopolitical, economic, financial, environmental, transportation, epidemiological systems and their impacts is the key to risk management. This paper proposes a new nonlinear time series model: autoregressive conditional accelerated Fr\'echet (AcAF) model and introduces two new endopathic and exopathic competing risk measures for better learning risk patterns, decoupling systemic risk, and making better risk management. The paper establishes the probabilistic properties of stationarity and ergodicity of the AcAF model. Simulation demonstrates the efficiency of the proposed estimators and the AcAF model's flexibility in modeling heterogeneous data. Empirical studies on the stock returns in S&P 500 and the cryptocurrency trading show the superior performance of the proposed model in terms of the identified risk patterns, endopathic and exopathic competing risks, being informative with greater interpretability, enhancing the understanding of the systemic risks of a market and their causes, and making better risk management possible.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.