Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error estimates for fully discrete generalized FEMs with locally optimal spectral approximations (2107.09988v2)

Published 21 Jul 2021 in math.NA and cs.NA

Abstract: This paper is concerned with error estimates of the fully discrete generalized finite element method (GFEM) with optimal local approximation spaces for solving elliptic problems with heterogeneous coefficients. The local approximation spaces are constructed using eigenvectors of local eigenvalue problems solved by the finite element method on some sufficiently fine mesh with mesh size $h$. The error bound of the discrete GFEM approximation is proved to converge as $h\rightarrow 0$ towards that of the continuous GFEM approximation, which was shown to decay nearly exponentially in previous works. Moreover, even for fixed mesh size $h$, a nearly exponential rate of convergence of the local approximation errors with respect to the dimension of the local spaces is established. An efficient and accurate method for solving the discrete eigenvalue problems is proposed by incorporating the discrete $A$-harmonic constraint directly into the eigensolver. Numerical experiments are carried out to confirm the theoretical results and to demonstrate the effectiveness of the method.

Citations (7)

Summary

We haven't generated a summary for this paper yet.