Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite-memory strategies in two-player infinite games (2107.09945v1)

Published 21 Jul 2021 in cs.GT

Abstract: We study infinite two-player win/lose games $(A,B,W)$ where $A,B$ are finite and $W \subseteq (A \times B)\omega$. At each round Player 1 and Player 2 concurrently choose one action in $A$ and $B$, respectively. Player 1 wins iff the generated sequence is in $W$. Each history $h \in (A \times B)*$ induces a game $(A,B,W_h)$ with $W_h := {\rho \in (A \times B)\omega \mid h \rho \in W}$. We show the following: if $W$ is in $\Delta0_2$ (for the usual topology), if the inclusion relation induces a well partial order on the $W_h$'s, and if Player 1 has a winning strategy, then she has a finite-memory winning strategy. Our proof relies on inductive descriptions of set complexity, such as the Hausdorff difference hierarchy of the open sets. Examples in $\Sigma0_2$ and $\Pi0_2$ show some tightness of our result. Our result can be translated to games on finite graphs: e.g. finite-memory determinacy of multi-energy games is a direct corollary, whereas it does not follow from recent general results on finite memory strategies.

Citations (6)

Summary

We haven't generated a summary for this paper yet.