Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Estimating covariant Lyapunov vectors from data (2107.08925v2)

Published 16 Jul 2021 in physics.data-an, cs.LG, nlin.CD, and physics.ao-ph

Abstract: Covariant Lyapunov vectors characterize the directions along which perturbations in dynamical systems grow. They have also been studied as predictors of critical transitions and extreme events. For many applications like, for example, prediction, it is necessary to estimate the vectors from data since model equations are unknown for many interesting phenomena. We propose a novel method for estimating covariant Lyapunov vectors based on data records without knowing the underlying equations of the system. In contrast to previous approaches, our approach can be applied to high-dimensional data-sets. We demonstrate that this purely data-driven approach can accurately estimate covariant Lyapunpov vectors from data records generated by low and high-dimensional dynamical systems. The highest dimension of a time-series from which covariant Lyapunov vectors were estimated in this contribution is 128. Being able to infer covariant Lyapunov vectors from data-records could encourage numerous future applications in data-analysis and data-based predictions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.