Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Competitive equilibrium always exists for combinatorial auctions with graphical pricing schemes (2107.08813v2)

Published 19 Jul 2021 in math.CO, cs.GT, econ.GN, and q-fin.EC

Abstract: We show that a competitive equilibrium always exists in combinatorial auctions with anonymous graphical valuations and pricing, using discrete geometry. This is an intuitive and easy-to-construct class of valuations that can model both complementarity and substitutes, and to our knowledge, it is the first class besides gross substitutes that have guaranteed competitive equilibrium. We prove through counter-examples that our result is tight, and we give explicit algorithms for constructive competitive pricing vectors. We also give extensions to multi-unit combinatorial auctions (also known as product-mix auctions). Combined with theorems on graphical valuations and pricing equilibrium of Candogan, Ozdagar and Parrilo, our results indicate that quadratic pricing is a highly practical method to run combinatorial auctions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.