2000 character limit reached
Nice pseudo-Riemannian nilsolitons (2107.07767v1)
Published 16 Jul 2021 in math.DG
Abstract: We study nice nilpotent Lie algebras admitting a diagonal nilsoliton metric. We classify nice Riemannian nilsolitons up to dimension $9$. For general signature, we show that determining whether a nilpotent nice Lie algebra admits a nilsoliton metric reduces to a linear problem together with a system of as many polynomial equations as the corank of the root matrix. We classify nice nilsolitons of any signature: in dimension $\leq 7$; in dimension $8$ for corank $\leq 1$; in dimension $9$ for corank zero.