Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal-Design Domain-Adaptation for Exposure Prediction in Two-Stage Epidemiological Studies (2107.07602v1)

Published 15 Jul 2021 in stat.AP

Abstract: In the first stage of a two-stage study, the researcher uses a statistical model to impute the unobserved exposures. In the second stage, imputed exposures serve as covariates in epidemiological models. Imputation error in the first stage operate as measurement errors in the second stage, and thus bias exposure effect estimates. This study aims to improve the estimation of exposure effects by sharing information between the first and second stage. At the heart of our estimator is the observation that not all second-stage observations are equally important to impute. We thus borrow ideas from the optimal-experimental-design theory, to identify individuals of higher importance. We then improve the imputation of these individuals using ideas from the machine-learning literature of domain-adaptation. Our simulations confirm that the exposure effect estimates are more accurate than the current best practice. An empirical demonstration yields smaller estimates of PM effect on hyperglycemia risk, with tighter confidence bands. Sharing information between environmental scientist and epidemiologist improves health effect estimates. Our estimator is a principled approach for harnessing this information exchange, and may be applied to any two stage study.

Summary

We haven't generated a summary for this paper yet.