Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 35 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 439 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

A Tauberian Approach to an Analog of Weyl's law for the Kohn Laplacian on Compact Heisenberg Manifolds (2107.07419v1)

Published 15 Jul 2021 in math.CV and math.SP

Abstract: Let $M= \Gamma \setminus \mathbb{H}d$ be a compact quotient of the $d$-dimensional Heisenberg group $\mathbb{H}_d$ by a lattice subgroup $\Gamma$. We show that the eigenvalue counting function $N(\lambda)$ for any fixed element of a family of second order differential operators $\left{\mathcal{L}\alpha\right}$ on $M$ has asymptotic behavior $N\left(\lambda\right) \sim C_{d,\alpha} \operatorname{vol}\left(M\right) \lambda{d + 1}$, where $C_{d,\alpha}$ is a constant that only depends on the dimension $d$ and the parameter $\alpha$. As a consequence, we obtain an analog of Weyl's law (both on functions and forms) for the Kohn Laplacian on $M$. Our main tools are Folland's description of the spectrum of $\mathcal{L}_{\alpha}$ and Karamata's Tauberian theorem.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.