Streaming Submodular Maximization under Matroid Constraints (2107.07183v2)
Abstract: Recent progress in (semi-)streaming algorithms for monotone submodular function maximization has led to tight results for a simple cardinality constraint. However, current techniques fail to give a similar understanding for natural generalizations, including matroid constraints. This paper aims at closing this gap. For a single matroid of rank $k$ (i.e., any solution has cardinality at most $k$), our main results are: 1) a single-pass streaming algorithm that uses $\widetilde{O}(k)$ memory and achieves an approximation guarantee of $0.3178$, and 2) a multi-pass streaming algorithm that uses $\widetilde{O}(k)$ memory and achieves an approximation guarantee of $(1-1/e - \varepsilon)$ by taking a constant (depending on $\varepsilon$) number of passes over the stream. This improves on the previously best approximation guarantees of $1/4$ and $1/2$ for single-pass and multi-pass streaming algorithms, respectively. In fact, our multi-pass streaming algorithm is tight in that any algorithm with a better guarantee than $1/2$ must make several passes through the stream and any algorithm that beats our guarantee of $1-1/e$ must make linearly many passes (as well as an exponential number of value oracle queries). Moreover, we show how the approach we use for multi-pass streaming can be further strengthened if the elements of the stream arrive in uniformly random order, implying an improved result for $p$-matchoid constraints.
- Moran Feldman (50 papers)
- Paul Liu (22 papers)
- Ashkan Norouzi-Fard (24 papers)
- Ola Svensson (55 papers)
- Rico Zenklusen (52 papers)