Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalisation in Neural Networks Does not Require Feature Overlap (2107.06872v1)

Published 4 Jul 2021 in cs.NE, cs.AI, and cs.LG

Abstract: That shared features between train and test data are required for generalisation in artificial neural networks has been a common assumption of both proponents and critics of these models. Here, we show that convolutional architectures avoid this limitation by applying them to two well known challenges, based on learning the identity function and learning rules governing sequences of words. In each case, successful performance on the test set requires generalising to features that were not present in the training data, which is typically not feasible for standard connectionist models. However, our experiments demonstrate that neural networks can succeed on such problems when they incorporate the weight sharing employed by convolutional architectures. In the image processing domain, such architectures are intended to reflect the symmetry under spatial translations of the natural world that such images depict. We discuss the role of symmetry in the two tasks and its connection to generalisation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.