Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Procedural Content Generation using Behavior Trees (PCGBT) (2107.06638v2)

Published 24 Jun 2021 in cs.AI

Abstract: Behavior trees (BTs) are a popular method for modeling NPC and enemy AI behavior and have been widely used in commercial games. In this work, rather than use BTs to model game playing agents, we use them for modeling game design agents, defining behaviors as content generation tasks rather than in-game actions. Similar to how traditional BTs enable modeling behaviors in a modular and dynamic manner, BTs for PCG enable simple subtrees for generating parts of levels to be combined modularly to form complex trees for generating whole levels as well as generators that can dynamically vary the generated content. We refer to this approach as Procedural Content Generation using Behavior Trees, or PCGBT, and demonstrate it by using BTs to model generators for Super Mario Bros., Mega Man and Metroid levels as well as dungeon layouts and discuss several ways in which this paradigm could be applied and extended in the future.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Anurag Sarkar (17 papers)
  2. Seth Cooper (23 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.