Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
114 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
35 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

RCLC: ROI-based joint conventional and learning video compression (2107.06492v1)

Published 14 Jul 2021 in cs.MM, cs.CV, and eess.IV

Abstract: COVID-19 leads to the high demand for remote interactive systems ever seen. One of the key elements of these systems is video streaming, which requires a very high network bandwidth due to its specific real-time demand, especially with high-resolution video. Existing video compression methods are struggling in the trade-off between video quality and the speed requirement. Addressed that the background information rarely changes in most remote meeting cases, we introduce a Region-Of-Interests (ROI) based video compression framework (named RCLC) that leverages the cutting-edge learning-based and conventional technologies. In RCLC, each coming frame is marked as a background-updating (BU) or ROI-updating (RU) frame. By applying the conventional video codec, the BU frame is compressed with low-quality and high-compression, while the ROI from RU-frame is compressed with high-quality and low-compression. The learning-based methods are applied to detect the ROI, blend background-ROI, and enhance video quality. The experimental results show that our RCLC can reduce up to 32.55\% BD-rate for the ROI region compared to H.265 video codec under a similar compression time with 1080p resolution.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.