Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

T product Tensors Part II: Tail Bounds for Sums of Random T product Tensors (2107.06224v2)

Published 13 Jul 2021 in math.PR

Abstract: This paper is the Part II of a serious work about T product tensors focusing at establishing new probability bounds for sums of random, independent, T product tensors. These probability bounds characterize large deviation behavior of the extreme eigenvalue of the sums of random T product tensors. We apply Lapalace transform method and Lieb concavity theorem for T product tensors obtained from our Part I paper, and apply these tools to generalize the classical bounds associated with the names Chernoff, and Bernstein from the scalar to the T product tensor setting. Tail bounds for the norm of a sum of random rectangular T product tensors are also derived from corollaries of random Hermitian T product tensors cases. The proof mechanism is also applied to T product tensor valued martingales and T product tensor based Azuma, Hoeffding and McDiarmid inequalities are derived.

Summary

We haven't generated a summary for this paper yet.