Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near optimal spectral gaps for hyperbolic surfaces (2107.05292v3)

Published 12 Jul 2021 in math.SP, math.AP, math.DG, and math.PR

Abstract: We prove that if $X$ is a finite area non-compact hyperbolic surface, then for any $\epsilon>0$, with probability tending to one as $n\to\infty$, a uniformly random degree $n$ Riemannian cover of $X$ has no eigenvalues of the Laplacian in $[0,\frac{1}{4}-\epsilon)$ other than those of $X$, and with the same multiplicities. As a result, using a compactification procedure due to Buser, Burger, and Dodziuk, we settle in the affirmative the question of whether there exist a sequence of closed hyperbolic surfaces with genera tending to infinity and first non-zero eigenvalue of the Laplacian tending to $\frac{1}{4}$.

Summary

We haven't generated a summary for this paper yet.