Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Stable category of maximal Cohen-Macaulay modules over Gorenstein rings (2107.05237v2)

Published 12 Jul 2021 in math.AC and math.RT

Abstract: Let $(A,\mathfrak{m})$ be a Gorenstein local ring and let $CMS(A)$ be its stable category of maximal CM $A$-modules. Suppose $CMS(A) \cong CMS(B)$ as triangulated categories. Then we show (1) If $A$ is a complete intersection of codimension $c$ then so is $B$. (2) If $A, B$ are Henselian and not hypersurfaces then $\dim A = \dim B$. (3) If $A, B$ are Henselian and $A$ is an isolated singularity then so is $B$. We also give some applications of our results. It should be remarked that if $R,S$ are complete CM but not necessarily Gorenstein and if there is an triangle isomorphism between the singularity categories of $R$ and $S$ then it is possible that $\dim R - \dim S$ is odd, see M.~Kalck; Adv. Math. 390 (2021), Paper No. 107913.

Summary

We haven't generated a summary for this paper yet.