Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

A new approach to the representation theory of the partition category (2107.05099v1)

Published 11 Jul 2021 in math.RT

Abstract: We explain a new approach to the representation theory of the partition category based on a reformulation of the definition of the Jucys-Murphy elements introduced originally by Halverson and Ram and developed further by Enyang. Our reformulation involves a new graphical monoidal category, the affine partition category, which is defined here as a certain monoidal subcategory of Khovanov's Heisenberg category. We use the Jucys-Murphy elements to construct some special projective functors, then apply these functors to give self-contained proofs of results of Comes and Ostrik on blocks of Deligne's category Rep(S_t).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.