An essentially decentralized interior point method for control (2107.04664v4)
Abstract: Distributed and decentralized optimization are key for the control of networked systems. Application examples include distributed model predictive control and distributed sensing or estimation. Non-linear systems, however, lead to problems with non-convex constraints for which classical decentralized optimization algorithms lack convergence guarantees. Moreover, classical decentralized algorithms usually exhibit only linear convergence. This paper presents an essentially decentralized primal-dual interior point method with convergence guarantees for non-convex problems at a superlinear rate. We show that the proposed method works reliably on a numerical example from power systems. Our results indicate that the proposed method outperforms ADMM in terms of computation time and computational complexity of the subproblems.