Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Conjugacy classes and centralisers in wreath products (2107.04645v2)

Published 9 Jul 2021 in math.GR

Abstract: In analogy to the disjoint cycle decomposition in permutation groups, Ore and Specht define a decomposition of elements of the full monomial group and exploit this to describe conjugacy classes and centralisers of elements in the full monomial group. We generalise their results to wreath products whose base group need not be finite and whose top group acts faithfully on a finite set. We parameterise conjugacy classes and centralisers of elements in such wreath products explicitly. For finite wreath products, our approach yields efficient algorithms for finding conjugating elements, conjugacy classes, and centralisers.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.