Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Offline reinforcement learning with uncertainty for treatment strategies in sepsis (2107.04491v2)

Published 9 Jul 2021 in cs.LG and cs.AI

Abstract: Guideline-based treatment for sepsis and septic shock is difficult because sepsis is a disparate range of life-threatening organ dysfunctions whose pathophysiology is not fully understood. Early intervention in sepsis is crucial for patient outcome, yet those interventions have adverse effects and are frequently overadministered. Greater personalization is necessary, as no single action is suitable for all patients. We present a novel application of reinforcement learning in which we identify optimal recommendations for sepsis treatment from data, estimate their confidence level, and identify treatment options infrequently observed in training data. Rather than a single recommendation, our method can present several treatment options. We examine learned policies and discover that reinforcement learning is biased against aggressive intervention due to the confounding relationship between mortality and level of treatment received. We mitigate this bias using subspace learning, and develop methodology that can yield more accurate learning policies across healthcare applications.

Citations (6)

Summary

We haven't generated a summary for this paper yet.