Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diagonal Nonlinear Transformations Preserve Structure in Covariance and Precision Matrices (2107.04136v2)

Published 8 Jul 2021 in math.ST, stat.ML, and stat.TH

Abstract: For a multivariate normal distribution, the sparsity of the covariance and precision matrices encodes complete information about independence and conditional independence properties. For general distributions, the covariance and precision matrices reveal correlations and so-called partial correlations between variables, but these do not, in general, have any correspondence with respect to independence properties. In this paper, we prove that, for a certain class of non-Gaussian distributions, these correspondences still hold, exactly for the covariance and approximately for the precision. The distributions -- sometimes referred to as "nonparanormal" -- are given by diagonal transformations of multivariate normal random variables. We provide several analytic and numerical examples illustrating these results.

Citations (5)

Summary

We haven't generated a summary for this paper yet.