Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zeph: Cryptographic Enforcement of End-to-End Data Privacy (2107.03726v1)

Published 8 Jul 2021 in cs.CR

Abstract: As increasingly more sensitive data is being collected to gain valuable insights, the need to natively integrate privacy controls in data analytics frameworks is growing in importance. Today, privacy controls are enforced by data curators with full access to data in the clear. However, a plethora of recent data breaches show that even widely trusted service providers can be compromised. Additionally, there is no assurance that data processing and handling comply with the claimed privacy policies. This motivates the need for a new approach to data privacy that can provide strong assurance and control to users. This paper presents Zeph, a system that enables users to set privacy preferences on how their data can be shared and processed. Zeph enforces privacy policies cryptographically and ensures that data available to third-party applications complies with users' privacy policies. Zeph executes privacy-adhering data transformations in real-time and scales to thousands of data sources, allowing it to support large-scale low-latency data stream analytics. We introduce a hybrid cryptographic protocol for privacy-adhering transformations of encrypted data. We develop a prototype of Zeph on Apache Kafka to demonstrate that Zeph can perform large-scale privacy transformations with low overhead.

Citations (28)

Summary

We haven't generated a summary for this paper yet.