Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sleep syndromes onset detection based on automatic sleep staging algorithm (2107.03387v1)

Published 7 Jul 2021 in q-bio.NC, cs.LG, and eess.SP

Abstract: In this paper, we propose a novel method and a practical approach to predicting early onsets of sleep syndromes, including restless leg syndrome, insomnia, based on an algorithm that is comprised of two modules. A Fast Fourier Transform is applied to 30 seconds long epochs of EEG recordings to provide localized time-frequency information, and a deep convolutional LSTM neural network is trained for sleep stage classification. Automating sleep stages detection from EEG data offers great potential to tackling sleep irregularities on a daily basis. Thereby, a novel approach for sleep stage classification is proposed which combines the best of signal processing and statistics. In this study, we used the PhysioNet Sleep European Data Format (EDF) Database. The code evaluation showed impressive results, reaching an accuracy of 86.43, precision of 77.76, recall of 93,32, F1-score of 89.12 with the final mean false error loss of 0.09.

Summary

We haven't generated a summary for this paper yet.