Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance Evaluation of Mixed-Precision Runge-Kutta Methods (2107.03357v1)

Published 7 Jul 2021 in math.NA, cs.NA, and cs.PF

Abstract: Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were proposed and analyzed in [8]. These specially designed methods use reduced precision or the implicit computations and full precision for the explicit computations. We develop a FORTRAN code to solve a nonlinear system of ordinary differential equations using the mixed precision additive Runge-Kutta (MP-ARK) methods on IBM POWER9 and Intel x86_64 chips. The convergence, accuracy, runtime, and energy consumption of these methods is explored. We show that these MP-ARK methods efficiently produce accurate solutions with significant reductions in runtime (and by extension energy consumption).

Citations (4)

Summary

We haven't generated a summary for this paper yet.