Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deep Learning-based Multimodal Depth-Aware Dynamic Hand Gesture Recognition System (2107.02543v2)

Published 6 Jul 2021 in cs.CV, cs.HC, and cs.LG

Abstract: The dynamic hand gesture recognition task has seen studies on various unimodal and multimodal methods. Previously, researchers have explored depth and 2D-skeleton-based multimodal fusion CRNNs (Convolutional Recurrent Neural Networks) but have had limitations in getting expected recognition results. In this paper, we revisit this approach to hand gesture recognition and suggest several improvements. We observe that raw depth images possess low contrast in the hand regions of interest (ROI). They do not highlight important fine details, such as finger orientation, overlap between the finger and palm, or overlap between multiple fingers. We thus propose quantizing the depth values into several discrete regions, to create a higher contrast between several key parts of the hand. In addition, we suggest several ways to tackle the high variance problem in existing multimodal fusion CRNN architectures. We evaluate our method on two benchmarks: the DHG-14/28 dataset and the SHREC'17 track dataset. Our approach shows a significant improvement in accuracy and parameter efficiency over previous similar multimodal methods, with a comparable result to the state-of-the-art.

Citations (6)

Summary

We haven't generated a summary for this paper yet.