Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Split-and-Bridge: Adaptable Class Incremental Learning within a Single Neural Network (2107.01349v1)

Published 3 Jul 2021 in cs.LG, cs.AI, and cs.CV

Abstract: Continual learning has been a major problem in the deep learning community, where the main challenge is how to effectively learn a series of newly arriving tasks without forgetting the knowledge of previous tasks. Initiated by Learning without Forgetting (LwF), many of the existing works report that knowledge distillation is effective to preserve the previous knowledge, and hence they commonly use a soft label for the old task, namely a knowledge distillation (KD) loss, together with a class label for the new task, namely a cross entropy (CE) loss, to form a composite loss for a single neural network. However, this approach suffers from learning the knowledge by a CE loss as a KD loss often more strongly influences the objective function when they are in a competitive situation within a single network. This could be a critical problem particularly in a class incremental scenario, where the knowledge across tasks as well as within the new task, both of which can only be acquired by a CE loss, is essentially learned due to the existence of a unified classifier. In this paper, we propose a novel continual learning method, called Split-and-Bridge, which can successfully address the above problem by partially splitting a neural network into two partitions for training the new task separated from the old task and re-connecting them for learning the knowledge across tasks. In our thorough experimental analysis, our Split-and-Bridge method outperforms the state-of-the-art competitors in KD-based continual learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jong-Yeong Kim (1 paper)
  2. Dong-Wan Choi (10 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.