Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical convergence of discrete extensions in a space-time finite element, fictitious domain method for the Navier-Stokes equations (2107.01077v1)

Published 2 Jul 2021 in math.NA and cs.NA

Abstract: A key ingredient of our fictitious domain, higher order space-time cut finite element (CutFEM) approach for solving the incompressible Navier--Stokes equations on evolving domains (cf.\ \cite{Bause2021}) is the extension of the physical solution from the time-dependent flow domain $\Omega_ft$ to the entire, time-independent computational domain $\Omega$. The extension is defined implicitly and, simultaneously, aims at stabilizing the discrete solution in the case of unavoidable irregular small cuts. Here, the convergence properties of the scheme are studied numerically for variations of the combined extension and stabilization.

Citations (1)

Summary

We haven't generated a summary for this paper yet.