Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Target-dependent UNITER: A Transformer-Based Multimodal Language Comprehension Model for Domestic Service Robots (2107.00811v1)

Published 2 Jul 2021 in cs.RO, cs.CL, and cs.CV

Abstract: Currently, domestic service robots have an insufficient ability to interact naturally through language. This is because understanding human instructions is complicated by various ambiguities and missing information. In existing methods, the referring expressions that specify the relationships between objects are insufficiently modeled. In this paper, we propose Target-dependent UNITER, which learns the relationship between the target object and other objects directly by focusing on the relevant regions within an image, rather than the whole image. Our method is an extension of the UNITER-based Transformer that can be pretrained on general-purpose datasets. We extend the UNITER approach by introducing a new architecture for handling the target candidates. Our model is validated on two standard datasets, and the results show that Target-dependent UNITER outperforms the baseline method in terms of classification accuracy.

Citations (10)

Summary

We haven't generated a summary for this paper yet.