Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Nonnegative Matrix Factorization with Group and Basis Restrictions (2107.00744v1)

Published 1 Jul 2021 in stat.ME and physics.med-ph

Abstract: Nonnegative matrix factorization (NMF) is a popular method used to reduce dimensionality in data sets whose elements are nonnegative. It does so by decomposing the data set of interest, $\mathbf{X}$, into two lower rank nonnegative matrices multiplied together ($\mathbf{X} \approx \mathbf{WH}$). These two matrices can be described as the latent factors, represented in the rows of $\mathbf{H}$, and the scores of the observations on these factors that are found in the rows of $\mathbf{W}$. This paper provides an extension of this method which allows one to specify prior knowledge of the data, including both group information and possible underlying factors. This is done by further decomposing the matrix, $\mathbf{H}$, into matrices $\mathbf{A}$ and $\mathbf{S}$ multiplied together. These matrices represent an 'auxiliary' matrix and a semi-constrained factor matrix respectively. This method and its updating criterion are proposed, followed by its application on both simulated and real world examples.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.