Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Where is the disease? Semi-supervised pseudo-normality synthesis from an abnormal image (2106.15345v1)

Published 24 Jun 2021 in cs.CV, cs.LG, and eess.IV

Abstract: Pseudo-normality synthesis, which computationally generates a pseudo-normal image from an abnormal one (e.g., with lesions), is critical in many perspectives, from lesion detection, data augmentation to clinical surgery suggestion. However, it is challenging to generate high-quality pseudo-normal images in the absence of the lesion information. Thus, expensive lesion segmentation data have been introduced to provide lesion information for the generative models and improve the quality of the synthetic images. In this paper, we aim to alleviate the need of a large amount of lesion segmentation data when generating pseudo-normal images. We propose a Semi-supervised Medical Image generative LEarning network (SMILE) which not only utilizes limited medical images with segmentation masks, but also leverages massive medical images without segmentation masks to generate realistic pseudo-normal images. Extensive experiments show that our model outperforms the best state-of-the-art model by up to 6% for data augmentation task and 3% in generating high-quality images. Moreover, the proposed semi-supervised learning achieves comparable medical image synthesis quality with supervised learning model, using only 50 of segmentation data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yuanqi Du (52 papers)
  2. Quan Quan (75 papers)
  3. Hu Han (29 papers)
  4. S. Kevin Zhou (165 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.