Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
135 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

TWAG: A Topic-Guided Wikipedia Abstract Generator (2106.15135v1)

Published 29 Jun 2021 in cs.CL

Abstract: Wikipedia abstract generation aims to distill a Wikipedia abstract from web sources and has met significant success by adopting multi-document summarization techniques. However, previous works generally view the abstract as plain text, ignoring the fact that it is a description of a certain entity and can be decomposed into different topics. In this paper, we propose a two-stage model TWAG that guides the abstract generation with topical information. First, we detect the topic of each input paragraph with a classifier trained on existing Wikipedia articles to divide input documents into different topics. Then, we predict the topic distribution of each abstract sentence, and decode the sentence from topic-aware representations with a Pointer-Generator network. We evaluate our model on the WikiCatSum dataset, and the results show that \modelnames outperforms various existing baselines and is capable of generating comprehensive abstracts. Our code and dataset can be accessed at \url{https://github.com/THU-KEG/TWAG}

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.