Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A generalization of Tóth identity in the ring of algebraic integers involving a Dirichlet Character (2106.13983v1)

Published 26 Jun 2021 in math.NT

Abstract: The $k$-dimensional generalized Euler function $\varphi_k(n)$ is defined to be the number of ordered $k$-tuples $(a_1,a_2,\ldots, a_k) \in \mathbb{N}k$ with $1\leq a_1,a_2,\ldots, a_k \leq n$ such that both the product $a_1a_2\cdots a_k$ and the sum $a_1+a_2+\cdots+a_k$ are co-prime to $n$. T\'oth proved that the identity \begin{equation*} \sum_{\substack{a_1,a_2,\ldots, a_k=1 \ \gcd(a_1a_2\cdots a_k,n)=1\ \gcd(a_1+a_2+\cdots+a_k,n)=1}}n \gcd(a_1+a_2+\cdots+a_k-1,n) =\varphi_k(n)\sigma_0(n), \;\; \text{ where } \sigma_s(n) = \sum_{d\mid n}ds \;\; \text{ holds. } \end{equation*} This identity can also be viewed as a generalization of Menon's identity. In this article, we generalize this identity to the ring of algebraic integers involving arithmetical functions and Dirichlet characters.

Summary

We haven't generated a summary for this paper yet.