Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scene Uncertainty and the Wellington Posterior of Deterministic Image Classifiers (2106.13870v2)

Published 25 Jun 2021 in cs.CV, cs.LG, and stat.ML

Abstract: We propose a method to estimate the uncertainty of the outcome of an image classifier on a given input datum. Deep neural networks commonly used for image classification are deterministic maps from an input image to an output class. As such, their outcome on a given datum involves no uncertainty, so we must specify what variability we are referring to when defining, measuring and interpreting uncertainty, and attributing "confidence" to the outcome. To this end, we introduce the Wellington Posterior, which is the distribution of outcomes that would have been obtained in response to data that could have been generated by the same scene that produced the given image. Since there are infinitely many scenes that could have generated any given image, the Wellington Posterior involves inductive transfer from scenes other than the one portrayed. We explore the use of data augmentation, dropout, ensembling, single-view reconstruction, and model linearization to compute a Wellington Posterior. Additional methods include the use of conditional generative models such as generative adversarial networks, neural radiance fields, and conditional prior networks. We test these methods against the empirical posterior obtained by performing inference on multiple images of the same underlying scene. These developments are only a small step towards assessing the reliability of deep network classifiers in a manner that is compatible with safety-critical applications and human interpretation.

Summary

We haven't generated a summary for this paper yet.