Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
87 tokens/sec
Gemini 2.5 Pro Premium
36 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
39 tokens/sec
GPT-4o
95 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
460 tokens/sec
Kimi K2 via Groq Premium
219 tokens/sec
2000 character limit reached

Ladder Polynomial Neural Networks (2106.13834v2)

Published 25 Jun 2021 in cs.LG and cs.NE

Abstract: Polynomial functions have plenty of useful analytical properties, but they are rarely used as learning models because their function class is considered to be restricted. This work shows that when trained properly polynomial functions can be strong learning models. Particularly this work constructs polynomial feedforward neural networks using the product activation, a new activation function constructed from multiplications. The new neural network is a polynomial function and provides accurate control of its polynomial order. It can be trained by standard training techniques such as batch normalization and dropout. This new feedforward network covers several previous polynomial models as special cases. Compared with common feedforward neural networks, the polynomial feedforward network has closed-form calculations of a few interesting quantities, which are very useful in Bayesian learning. In a series of regression and classification tasks in the empirical study, the proposed model outperforms previous polynomial models.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.