Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$\mathcal{N}$IPM-HLSP: An Efficient Interior-Point Method for Hierarchical Least-Squares Programs (2106.13602v2)

Published 25 Jun 2021 in math.OC, cs.CC, cs.NA, cs.PF, cs.RO, cs.SY, eess.SY, and math.NA

Abstract: Hierarchical least-squares programs with linear constraints (HLSP) are a type of optimization problem very common in robotics. Each priority level contains an objective in least-squares form which is subject to the linear constraints of the higher priority levels. Active-set methods are a popular choice for solving them. However, they can perform poorly in terms of computational time if there are large changes of the active set. We therefore propose a computationally efficient primal-dual interior-point method (IPM) for dense HLSP's which is able to maintain constant numbers of solver iterations in these situations. We base our IPM on the computationally efficient nullspace method as it requires only a single matrix factorization per solver iteration instead of two as it is the case for other IPM formulations. We show that the resulting normal equations can be expressed in least-squares form. This avoids the formation of the quadratic Lagrangian Hessian and can possibly maintain high levels of sparsity. Our solver reliably solves ill-posed instantaneous hierarchical robot control problems without exhibiting the large variations in computation time seen in active-set methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com