Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Price of Tolerance in Distribution Testing (2106.13414v2)

Published 25 Jun 2021 in cs.DS, cs.IT, math.IT, math.PR, math.ST, stat.ML, and stat.TH

Abstract: We revisit the problem of tolerant distribution testing. That is, given samples from an unknown distribution $p$ over ${1, \dots, n}$, is it $\varepsilon_1$-close to or $\varepsilon_2$-far from a reference distribution $q$ (in total variation distance)? Despite significant interest over the past decade, this problem is well understood only in the extreme cases. In the noiseless setting (i.e., $\varepsilon_1 = 0$) the sample complexity is $\Theta(\sqrt{n})$, strongly sublinear in the domain size. At the other end of the spectrum, when $\varepsilon_1 = \varepsilon_2/2$, the sample complexity jumps to the barely sublinear $\Theta(n/\log n)$. However, very little is known about the intermediate regime. We fully characterize the price of tolerance in distribution testing as a function of $n$, $\varepsilon_1$, $\varepsilon_2$, up to a single $\log n$ factor. Specifically, we show the sample complexity to be [\tilde \Theta\left(\frac{\sqrt{n}}{\varepsilon_2{2}} + \frac{n}{\log n} \cdot \max \left{\frac{\varepsilon_1}{\varepsilon_22},\left(\frac{\varepsilon_1}{\varepsilon_22}\right){!!2}\right}\right),] providing a smooth tradeoff between the two previously known cases. We also provide a similar characterization for the problem of tolerant equivalence testing, where both $p$ and $q$ are unknown. Surprisingly, in both cases, the main quantity dictating the sample complexity is the ratio $\varepsilon_1/\varepsilon_22$, and not the more intuitive $\varepsilon_1/\varepsilon_2$. Of particular technical interest is our lower bound framework, which involves novel approximation-theoretic tools required to handle the asymmetry between $\varepsilon_1$ and $\varepsilon_2$, a challenge absent from previous works.

Citations (14)

Summary

We haven't generated a summary for this paper yet.