2000 character limit reached
The Existence of full dimensional tori for d-dimensional Nonlinear Schr$\ddot{\mbox{O}}$dinger equation (2106.13160v1)
Published 24 Jun 2021 in math.AP
Abstract: In this paper, we prove the existence of full dimensional tori for $d$-dimensional nonlinear Schr$\ddot{\mbox{o}}$dinger equation with periodic boundary conditions \begin{equation*}\label{L1} \sqrt{-1}u_{t}+\Delta u+V*u\pm\epsilon |u|2u=0,\hspace{12pt}x\in\mathbb{T}d,\quad d\geq 1, \end{equation*} where $V*$ is the convolution potential. Here the radius of the invariant torus satisfies a slower decay, i.e. \begin{equation*}\label{031601} I_{\textbf n}\sim e{-r\ln{\sigma}\left|\textbf n\right|},\qquad \mbox{as}\ \left|\textbf n\right|\rightarrow\infty, \end{equation*}for any $\sigma>2$ and $r\geq 1$. This result confirms a conjecture by Bourgain [J. Funct. Anal. 229 (2005), no. 1, 62-94].