Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rate Distortion Characteristic Modeling for Neural Image Compression (2106.12954v2)

Published 24 Jun 2021 in eess.IV, cs.CV, and cs.LG

Abstract: End-to-end optimized neural image compression (NIC) has obtained superior lossy compression performance recently. In this paper, we consider the problem of rate-distortion (R-D) characteristic analysis and modeling for NIC. We make efforts to formulate the essential mathematical functions to describe the R-D behavior of NIC using deep networks. Thus arbitrary bit-rate points could be elegantly realized by leveraging such model via a single trained network. We propose a plugin-in module to learn the relationship between the target bit-rate and the binary representation for the latent variable of auto-encoder. The proposed scheme resolves the problem of training distinct models to reach different points in the R-D space. Furthermore, we model the rate and distortion characteristic of NIC as a function of the coding parameter $\lambda$ respectively. Our experiments show our proposed method is easy to adopt and realizes state-of-the-art continuous bit-rate coding performance, which implies that our approach would benefit the practical deployment of NIC.

Citations (10)

Summary

We haven't generated a summary for this paper yet.