Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Encoding Involutory Invariances in Neural Networks (2106.12891v2)

Published 7 Jun 2021 in cs.LG, cs.AI, and cs.NE

Abstract: In certain situations, neural networks are trained upon data that obey underlying symmetries. However, the predictions do not respect the symmetries exactly unless embedded in the network structure. In this work, we introduce architectures that embed a special kind of symmetry namely, invariance with respect to involutory linear/affine transformations up to parity $p=\pm 1$. We provide rigorous theorems to show that the proposed network ensures such an invariance and present qualitative arguments for a special universal approximation theorem. An adaption of our techniques to CNN tasks for datasets with inherent horizontal/vertical reflection symmetry is demonstrated. Extensive experiments indicate that the proposed model outperforms baseline feed-forward and physics-informed neural networks while identically respecting the underlying symmetry.

Citations (1)

Summary

We haven't generated a summary for this paper yet.