Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Control of a Mixed Autonomy Signalised Urban Intersection: An Action-Delayed Reinforcement Learning Approach (2106.12755v1)

Published 24 Jun 2021 in eess.SY and cs.SY

Abstract: We consider a mixed autonomy scenario where the traffic intersection controller decides whether the traffic light will be green or red at each lane for multiple traffic-light blocks. The objective of the traffic intersection controller is to minimize the queue length at each lane and maximize the outflow of vehicles over each block. We consider that the traffic intersection controller informs the autonomous vehicle (AV) whether the traffic light will be green or red for the future traffic-light block. Thus, the AV can adapt its dynamics by solving an optimal control problem. We model the decision process of the traffic intersection controller as a deterministic delay Markov decision process owing to the delayed action by the traffic controller. We propose Reinforcement-learning based algorithm to obtain the optimal policy. We show - empirically - that our algorithm converges and reduces the energy costs of AVs drastically as the traffic controller communicates with the AVs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.