Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A tale of parahoric--Hecke algebras, Bernstein and Satake homomorphisms (2106.12500v2)

Published 23 Jun 2021 in math.RT and math.NT

Abstract: Let $\mathbf{G}$ be a connected reductive group over a {non-archimedean local field} $F$. Let $K_\mathcal{F}$ be the parahoric subgroup attached to a facet $\mathcal{F}$ in the Bruhat--Tits building of $\mathbf{G}$. The ultimate goal of the present paper is to describe the center of the parahoric--Hecke algebra $\mathcal{H}(\mathbf{G}(F)//K_{\mathcal{F}}, \mathbb{Z}[q{-1}])$ with level $K_{\mathcal{F}}$ and prove the compatibility of generalized (twisted) Bernstein and Satake homomorphisms.

Summary

We haven't generated a summary for this paper yet.