Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regret-optimal Estimation and Control (2106.12097v1)

Published 22 Jun 2021 in cs.LG, math.DS, and math.OC

Abstract: We consider estimation and control in linear time-varying dynamical systems from the perspective of regret minimization. Unlike most prior work in this area, we focus on the problem of designing causal estimators and controllers which compete against a clairvoyant noncausal policy, instead of the best policy selected in hindsight from some fixed parametric class. We show that the regret-optimal estimator and regret-optimal controller can be derived in state-space form using operator-theoretic techniques from robust control and present tight,data-dependent bounds on the regret incurred by our algorithms in terms of the energy of the disturbances. Our results can be viewed as extending traditional robust estimation and control, which focuses on minimizing worst-case cost, to minimizing worst-case regret. We propose regret-optimal analogs of Model-Predictive Control (MPC) and the Extended KalmanFilter (EKF) for systems with nonlinear dynamics and present numerical experiments which show that our regret-optimal algorithms can significantly outperform standard approaches to estimation and control.

Citations (29)

Summary

We haven't generated a summary for this paper yet.