Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Not All Labels Are Equal: Rationalizing The Labeling Costs for Training Object Detection (2106.11921v2)

Published 22 Jun 2021 in cs.CV and cs.LG

Abstract: Deep neural networks have reached high accuracy on object detection but their success hinges on large amounts of labeled data. To reduce the labels dependency, various active learning strategies have been proposed, typically based on the confidence of the detector. However, these methods are biased towards high-performing classes and can lead to acquired datasets that are not good representatives of the testing set data. In this work, we propose a unified framework for active learning, that considers both the uncertainty and the robustness of the detector, ensuring that the network performs well in all classes. Furthermore, our method leverages auto-labeling to suppress a potential distribution drift while boosting the performance of the model. Experiments on PASCAL VOC07+12 and MS-COCO show that our method consistently outperforms a wide range of active learning methods, yielding up to a 7.7% improvement in mAP, or up to 82% reduction in labeling cost. Code will be released upon acceptance of the paper.

Citations (33)

Summary

We haven't generated a summary for this paper yet.