Perturbation-based Regret Analysis of Predictive Control in Linear Time Varying Systems (2106.10497v1)
Abstract: We study predictive control in a setting where the dynamics are time-varying and linear, and the costs are time-varying and well-conditioned. At each time step, the controller receives the exact predictions of costs, dynamics, and disturbances for the future $k$ time steps. We show that when the prediction window $k$ is sufficiently large, predictive control is input-to-state stable and achieves a dynamic regret of $O(\lambdak T)$, where $\lambda < 1$ is a positive constant. This is the first dynamic regret bound on the predictive control of linear time-varying systems. Under more assumptions on the terminal costs, we also show that predictive control obtains the first competitive bound for the control of linear time-varying systems: $1 + O(\lambdak)$. Our results are derived using a novel proof framework based on a perturbation bound that characterizes how a small change to the system parameters impacts the optimal trajectory.