Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 463 tok/s Pro
Kimi K2 213 tok/s Pro
2000 character limit reached

Scalable Bayesian change point detection with spike and slab priors (2106.10383v1)

Published 18 Jun 2021 in stat.ME

Abstract: We study the use of spike and slab priors for consistent estimation of the number of change points and their locations. Leveraging recent results in the variable selection literature, we show that an estimator based on spike and slab priors achieves optimal localization rate in the multiple offline change point detection problem. Based on this estimator, we propose a Bayesian change point detection method, which is one of the fastest Bayesian methodologies, and it is more robust to misspecification of the error terms than the competing methods. We demonstrate through empirical work the good performance of our approach vis-a-vis some state-of-the-art benchmarks.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube