Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Differentiable Particle Filtering without Modifying the Forward Pass (2106.10314v2)

Published 18 Jun 2021 in stat.ML and cs.LG

Abstract: Particle filters are not compatible with automatic differentiation due to the presence of discrete resampling steps. While known estimators for the score function, based on Fisher's identity, can be computed using particle filters, up to this point they required manual implementation. In this paper we show that such estimators can be computed using automatic differentiation, after introducing a simple correction to the particle weights. This correction utilizes the stop-gradient operator and does not modify the particle filter operation on the forward pass, while also being cheap and easy to compute. Surprisingly, with the same correction automatic differentiation also produces good estimators for gradients of expectations under the posterior. We can therefore regard our method as a general recipe for making particle filters differentiable. We additionally show that it produces desired estimators for second-order derivatives and how to extend it to further reduce variance at the expense of additional computation.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.