Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active Offline Policy Selection (2106.10251v4)

Published 18 Jun 2021 in cs.LG, cs.AI, and stat.ML

Abstract: This paper addresses the problem of policy selection in domains with abundant logged data, but with a restricted interaction budget. Solving this problem would enable safe evaluation and deployment of offline reinforcement learning policies in industry, robotics, and recommendation domains among others. Several off-policy evaluation (OPE) techniques have been proposed to assess the value of policies using only logged data. However, there is still a big gap between the evaluation by OPE and the full online evaluation. Yet, large amounts of online interactions are often not possible in practice. To overcome this problem, we introduce active offline policy selection - a novel sequential decision approach that combines logged data with online interaction to identify the best policy. We use OPE estimates to warm start the online evaluation. Then, in order to utilize the limited environment interactions wisely we decide which policy to evaluate next based on a Bayesian optimization method with a kernel that represents policy similarity. We use multiple benchmarks, including real-world robotics, with a large number of candidate policies to show that the proposed approach improves upon state-of-the-art OPE estimates and pure online policy evaluation.

Citations (20)

Summary

We haven't generated a summary for this paper yet.