Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NoiseGrad: Enhancing Explanations by Introducing Stochasticity to Model Weights (2106.10185v3)

Published 18 Jun 2021 in cs.LG and cs.AI

Abstract: Many efforts have been made for revealing the decision-making process of black-box learning machines such as deep neural networks, resulting in useful local and global explanation methods. For local explanation, stochasticity is known to help: a simple method, called SmoothGrad, has improved the visual quality of gradient-based attribution by adding noise to the input space and averaging the explanations of the noisy inputs. In this paper, we extend this idea and propose NoiseGrad that enhances both local and global explanation methods. Specifically, NoiseGrad introduces stochasticity in the weight parameter space, such that the decision boundary is perturbed. NoiseGrad is expected to enhance the local explanation, similarly to SmoothGrad, due to the dual relationship between the input perturbation and the decision boundary perturbation. We evaluate NoiseGrad and its fusion with SmoothGrad -- FusionGrad -- qualitatively and quantitatively with several evaluation criteria, and show that our novel approach significantly outperforms the baseline methods. Both NoiseGrad and FusionGrad are method-agnostic and as handy as SmoothGrad using a simple heuristic for the choice of the hyperparameter setting without the need of finetuning.

Citations (28)

Summary

We haven't generated a summary for this paper yet.