Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Relaxed Lagrangian duality in convex infinite optimization: reverse strong duality and optimality (2106.09299v1)

Published 17 Jun 2021 in math.OC

Abstract: We associate with each convex optimization problem posed on some locally convex space with an infinite index set T, and a given non-empty family H formed by finite subsets of T, a suitable Lagrangian-Haar dual problem. We provide reverse H-strong duality theorems, H-Farkas type lemmas and optimality theorems. Special attention is addressed to infinite and semi-infinite linear optimization problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.