Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Two-stage Multi-modal Affect Analysis Framework for Children with Autism Spectrum Disorder (2106.09199v1)

Published 17 Jun 2021 in cs.CV, cs.HC, and cs.MM

Abstract: Autism spectrum disorder (ASD) is a developmental disorder that influences the communication and social behavior of a person in a way that those in the spectrum have difficulty in perceiving other people's facial expressions, as well as presenting and communicating emotions and affect via their own faces and bodies. Some efforts have been made to predict and improve children with ASD's affect states in play therapy, a common method to improve children's social skills via play and games. However, many previous works only used pre-trained models on benchmark emotion datasets and failed to consider the distinction in emotion between typically developing children and children with autism. In this paper, we present an open-source two-stage multi-modal approach leveraging acoustic and visual cues to predict three main affect states of children with ASD's affect states (positive, negative, and neutral) in real-world play therapy scenarios, and achieved an overall accuracy of 72:40%. This work presents a novel way to combine human expertise and machine intelligence for ASD affect recognition by proposing a two-stage schema.

Citations (17)

Summary

We haven't generated a summary for this paper yet.