Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recovery Guarantees for Time-varying Pairwise Comparison Matrices with Non-transitivity (2106.09151v1)

Published 16 Jun 2021 in cs.IT and math.IT

Abstract: Pairwise comparison matrices have received substantial attention in a variety of applications, especially in rank aggregation, the task of flattening items into a one-dimensional (and thus transitive) ranking. However, non-transitive preference cycles can arise in practice due to the fact that making a decision often requires a complex evaluation of multiple factors. In some applications, it may be important to identify and preserve information about the inherent non-transitivity, either in the pairwise comparison data itself or in the latent feature space. In this work, we develop structured models for non-transitive pairwise comparison matrices that can be exploited to recover such matrices from incomplete noisy data and thus allow the detection of non-transitivity. Considering that individuals' tastes and items' latent features may change over time, we formulate time-varying pairwise comparison matrix recovery as a dynamic skew-symmetric matrix recovery problem by modeling changes in the low-rank factors of the pairwise comparison matrix. We provide theoretical guarantees for the recovery and numerically test the proposed theory with both synthetic and real-world data.

Citations (3)

Summary

We haven't generated a summary for this paper yet.